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Abstract. We investigate the effect of electron-phonon interaction on the phononic properties in the one-
dimensional half-filled Holstein model of spinless fermions. By means of determinantal Quantum Monte
Carlo simulation we show that the behavior of the phonon dynamics gives a clear signal of the transition to
a charge-ordered phase, and the phase diagram obtained in this way is in excellent agreement with previous
DMRG results. By analyzing the phonon propagator we extract the renormalized phonon frequency, and
study how it first softens as the transition is approached and then subsequently hardens in the charge-
ordered phase. We then show how anharmonic features develop in the phonon propagator, and how the
interaction induces a sizable dispersion of the dressed phonon in the non-adiabatic regime.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 63.20.Kr Phonon-electron and
phonon-phonon interactions – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

Despite enormous theoretical efforts, effects arising from
the electron-phonon interaction in strongly correlated
many-body systems still remain incompletely understood.
Achieving an understanding of the complicated interplay
between electrons and phonons is, however, essential to
explain such diverse phenomena as colossal magnetore-
sistance in the manganites [1], the Peierls instability in
quasi-1D materials [2], and high temperature supercon-
ductivity in alkali-metal doped fullerenes [3] and cuprate
compounds [4]. Even in moderately or weakly correlated
materials, the electron-phonon interaction can give rise
to interesting effects which are not understandable in the
framework of the standard theories of electron-phonon in-
teraction, namely the Migdal-Eliashberg theory of super-
conductivity and the Born-Oppenheimer adiabatic princi-
ple. As a notable example, we mention the anomalies in
the phononic properties of superconducting MgB2 [5].

In this work we present a numerical investigation of
a simple model for coupled electron-phonon systems —
the half-filled Holstein model for spinless fermions — and
focus on the dynamics of the phononic degrees of free-
dom. In spite of its apparent simplicity, the model fully
accounts for the competition between local quantum fluc-
tuations and the tendency for charge ordering, and is thus
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a powerful tool to understand the physics of more realis-
tic systems. In one-dimension the system forms a metallic
Luttinger liquid for weak electron-phonon coupling. As the
coupling is increased, a quantum phase transition occurs
to an insulating state with long-range charge-density-wave
(CDW) order. A wide variety of methods have been used
to investigate this phase transition, with varying degrees
of success. Exact diagonalization schemes [6] permit ex-
tremely accurate calculation of the ground-state and low-
lying excitations, but are limited to treating rather small
clusters due to the large Hilbert space required for the
phonon degrees of freedom, and are thus subject to large
finite-size effects. Larger systems are accessible using the
density matrix renormalization group (DMRG) method,
and in a recent work [7] Bursill et al. were able to deter-
mine the location of this phase boundary using this ap-
proach. Their result correctly recovers the adiabatic and
anti-adiabatic limits (see Fig. 1) which can be evaluated
analytically [8], and interpolates smoothly between them.
Results obtained from a variational Lanczos scheme on
small clusters [9] agree well with the DMRG result, but
data produced by Quantum Monte Carlo (QMC) meth-
ods, such as the worldline QMC method used in the pio-
neering investigation of reference [8] and Green’s function
QMC [10], show significant deviations, the cause of which
is not known. The role of quantum lattice fluctuations
on observables has been discussed in references [11,12],
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Fig. 1. Phase diagram of the 1D Holstein model, showing the
phase boundary between the CDW insulator and Luttinger
liquid metal. For ease of comparison with previous results, the
y-axis is in units of g′ = g/

√
2mω, the coupling between the

electron and the quantized phonon operators ai/a†
i . Squares

indicate results from the world-line QMC method from refer-
ence [8], triangles are results from the Green’s function QMC
investigation of reference [10] and the solid circles are the re-
sults of this work using determinantal QMC. Diamonds denote
the results of the DMRG investigation in reference [7].

while the spectral properties have been analysed in refer-
ences [13,14].

In this work we make use of the determinantal QMC
method [15] which allows us to compute dynamical prop-
erties like the electron and phonon propagators without
approximations. These quantities are not equally acces-
sible to DMRG, which is otherwise the best method to
establish the phase diagram of one-dimensional models.
In contrast to previous QMC investigations we are able to
obtain estimates for the location for the phase boundary
in excellent agreement with the “benchmark” DMRG re-
sult. We concentrate on the phonon propagator, which
appears to produce more robust results than the elec-
tronic properties considered in previous QMC studies, and
show firstly how its behavior reveals the location of the
phase-boundary. We then go on to investigate in detail
the phonon-softening and anharmonicity effects induced
by the electron-phonon interaction by combining analy-
sis of the imaginary-time data with the spectral func-
tions obtained by analytically continuing this data to
real frequencies. This allows us to identify a renormal-
ized phonon frequency, and to follow its behavior as a
function of electron-phonon coupling. Besides a generic
softening of the frequency, we observe how for large bare
phonon frequency, the harmonic approximation for the
dressed phonon propagator fails as soon as the coupling
with the electrons is introduced. We also discuss how the
renormalization of the phonon properties also gives rise

to a phonon dispersion — even if the bare phonons are
dispersionless.

The paper is organized as follows. In Section 2 we
introduce the model and some details about the QMC
simulations. Section 3 presents the results, and it is in
turn divided into two subsections — the phonon propa-
gator in imaginary time and its analytical continuation to
real frequencies. In Section 4 we summarize and give our
conclusions.

2 Model and simulation

We consider the following Hamiltonian, describing spinless
fermions moving on a periodic 1D lattice and interacting
with a dispersionless phonon at each lattice site:

H = −t
∑

i

(
c†ici+1 + H.c.

)
− g

∑

i

niqi + µ
∑

i

ni

+
∑

i

(
p2

i

2m
+

mω2
0q

2
i

2

)
. (1)

Here ci/c†i are the fermion annihilation/creation operators
and ni is the fermion number operator c†ici. The electron-
phonon coupling is set by g, the phonon frequency is given
by ω0, and qi and pi denote the phonon displacement and
momentum operators respectively. We will express all en-
ergies in units of the electronic hopping t, and set the
phonon mass m equal to one. Unlike reference [8] we work
in the grand-canonical ensemble, in which the electronic
density is regulated by the chemical potential µ. In this
work we only consider the case of the half-filled system,
which is given by µ = g2/2ω2

0.
To simulate this model we employ the well-known

determinantal QMC method (DQMC) developed by
Blankenbecler, Scalapino and Sugar [15]. In this approach
the fermion degrees of freedom are analytically integrated
out of the action, which is straightforward as the Hamil-
tonian (1) is bilinear in fermion operators, leaving an
effective action expressed just in terms of the phonon dis-
placement field. By formally replacing the time coordi-
nate with imaginary-time (τ = it), the partition function
of the model can then be simulated as a path integral
of a Euclidean field theory using standard Monte Carlo
techniques. In this formalism the τ -axis represents an ad-
ditional compact dimension, the extent of which is given
by the inverse temperature β. In order to sample the zero-
temperature properties of the system, it is important that
sufficiently large values of β are used. By comparing the
convergence of simulations as β was increased we estab-
lished that in the adiabatic regime (ω0 ≤ t) it was suffi-
cient to take βt = 8, but for the highest phonon frequency
that we studied (ω0 = 4t) a larger value of βt = 16 was
required. Increasing the size of β also requires increasing
the number of time-slices used in the simulation, in or-
der to keep the systematic error arising from the Trotter
decomposition sufficiently small. This both increases the
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simulation’s running time and also diminishes its numeri-
cal stability, and therefore sets an upper limit on the value
of ω0 we are able to treat with this method.

Observables, such as the phonon correlation function,
are obtained from the simulation as thermal averages of
the form:

Dij(τ) = 〈qi(τ)qj(0)〉, 0 ≤ τ < β

= Tr
[
qi(τ)qj(0)e−βH

]
/Z (2)

where Z = Tr[exp(−βH)], and time-dependent operators
are defined as q(τ) = exp(−Hτ)q exp(Hτ). It is important
to note that the correlation functions produced by the
simulation depend on the imaginary, or Matsubara, time-
coordinate τ . To study the system’s dynamical properties
it is thus necessary to make an analytic continuation of
these functions to the real-time domain. This amounts to
the solution of the following inverse problem [16]:

S(τ) =
∫ ∞

−∞
dω

e−ωτ

1 + e−βω
χ′′

T (ω), (3)

where S(τ) is the Matsubara correlation function, and
χ′′

T (ω) is the imaginary component of the time-ordered
susceptibility. To perform this inversion we use a max-
imum entropy technique [16,17] based on the singular-
value decomposition [18] of the kernel of equation (3). By
imposing positivity and smoothness constraints on the so-
lution we find that the instabilities typically associated
with numerical analytical continuation procedures can be
controlled, and this method is thus able to produce stable
results of high resolution for the phonon spectral function.

3 Results

3.1 The Matsubara phonon propagator

In principle, the transition from the Luttinger liquid phase
to the CDW insulator can be observed in the staggered-
phonon order parameter

mp =
1
N

∑

j

(−1)j 〈qj〉, (4)

which takes a non-zero value in the CDW phase. It is
problematic, however, to measure this quantity directly
in a simulation of a finite system, as in the CDW phase
the system continually tunnels between the two degener-
ate ground-states, causing the expectation value of mp to
vanish in the ergodic limit. Over short runs, however, a
non-zero value can be obtained for mp if the system re-
mains trapped in one of the minima for the duration of
the simulation. This allows the location of the phase tran-
sition to be located approximately [8], but this estimate
is intrinsically rough, and cannot be improved easily as
the effect of increasing the number of measurements is to
make mp vanish. Nonetheless it provides a useful initial
comparison for other estimates, and we found that in all

cases it was consistent with the values we obtained by
other methods.

As mentioned above, our interest is devoted to the
phonon dynamics, which provides us with an alterna-
tive way to pinpoint the phase transition. More precisely,
we study the phonon propagator (2), which in the non-
interacting case (g = 0) reads:

D0
ij(τ, ω0) =

1
2ω0

coshω0(τ − β/2)
sinh ω0β/2

δij . (5)

It should be noted that as the Holstein phonon is purely
local, the bare phonon propagator also only has a trivial
spatial dependence. For small electron-phonon coupling it
is reasonable to expect that the phonon propagator has
the same form, but with with a renormalized (softened)
frequency Ω given by Ω2/ω2

0 = 1−Π(0)/ω2
0, where Π(ω)

is the local phonon self-energy in real frequencies. This
ansatz is most accurate when the frequency-dependence
of the phonon self-energy is weak, and deviations from
this ideal behavior are the fingerprints of phonon anhar-
monicity, i.e. of the difficulty in describing the fully dressed
phonon as a single renormalized oscillator.

As the system approaches the CDW transition, the
staggered (k = π) phonon correlation function is expected
to soften and eventually produce a sharp peak at zero
frequency, the weight of which measures the condensation
of the phonons. For an infinite system at T = 0, this
quantity would be the phonon staggered-order parameter
mp. On the other hand, the appearance of zero-frequency
weight may also occur in the local (k = 0) correlation
function, which is not, however, directly associated with
the CDW transition. In this case, the shift of weight can
be associated with a polaron crossover from a good metal
to a bad metal, in which the electronic mobility is strongly
reduced by the large coupling to the phonons.

We tested this expectation by fitting the local and
staggered imaginary time correlation functions with the
function D0(τ, Ω)+c, using the softened frequency Ω and
the shift c as fitting parameters. The rigid shift in imag-
inary time c is associated with a δ-like peak at zero fre-
quency, and describes the static average of the phonon
field. For the local correlator the value of c indicates the
static uniform distortion, which reduces the electron mo-
bility through polaronic effects, while for the staggered
case it is simply equal to the staggered phonon order
parameter m2

p. For a small value of the bare phonon-
frequency ω0 = 0.5, we find that using the above form
for the fitting function yields excellent results for both
the local and staggered propagators, at all values of the
electron-phonon coupling. We show one such example for
the staggered propagator in Figure 2a. The good quality
of the fit is corroborated by the form of the Fourier trans-
form of the correlator, shown to the right. The Fourier
representation of the non-interacting propagator (5) can
be easily shown to be

D0
ij(iωn, ω0) =

1
ω2

0 + ω2
n

(6)
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Fig. 2. (a) The staggered phonon propagator as a function
of imaginary time for ω0 = 0.5, g = 0.6 (c) for ω0 = 1 and
g = 1.5 and (e) for ω0 = 4 and g = 14.0. All data is taken from
simulations of 16-site systems. The line shows the fit to the
form D(τ, ω0) = D0(τ, Ω)+m2

p. In (b), (d) and (f) we compare
the corresponding Fourier transforms of these propagators in
Matsubara frequency space with the renormalized Lorentzian
equation (6).

where ωn are the Matsubara frequencies, ωn = 2πn/β.
Simply replacing the bare frequency, ω0, in equation (6)
with the renormalized frequency, Ω, obtained from the
fitting procedure provides an extremely good fit to the
Fourier transform of the Matsubara data, as can be seen
in Figure 2b. A similar behavior is observed for ω0 = 1
(Figs. 3c, d), where the fitting procedure again yields ex-
cellent results for both the Matsubara-time propagator
and its Fourier transform. We emphasize that these fits,
which essentially pass through every data-point, are ob-
tained using merely two fitting parameters with a direct
and suggestive physical meaning.

On increasing the bare phonon frequency further, how-
ever, we find that the fitting function no longer reproduces
the data once the electron-phonon coupling is turned
on. As can be seen from Figure 2e the curvature of the
phonon propagator as a function of τ cannot be de-
scribed simply in terms of a softened frequency. This ef-
fect can be seen equally distinctly in frequency space in
Figure 2e, where D(iωn) clearly deviates from the pre-
dicted Lorentzian behavior. Effectively the non-adiabatic
bare phonon introduces anharmonic effects, which are en-
hanced by increasing the coupling. The relationship be-
tween non-adiabaticity and anharmonicity has been pre-
viously proposed for MgB2 [19].

In Figure 3 we show the values for the renormalized
frequencies, obtained by the fitting procedure, for both
the local and staggered phonon propagators. The values of
m2

p produced by the fitting method are also shown below.
For ω0 = 0.5 (Fig. 3a) it can be seen that in the metal-
lic region the local phonon frequencies smoothly reduce
from their bare values as g increases, to reach a minimum
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Fig. 3. Softened phonon frequency, Ω, and order parameter,
m2

p, obtained by fitting the phonon propagator to the form
D(τ ) = D0(τ, Ω) + m2

p. Solid lines indicate the local phonon
frequency, dotted lines the staggered phonon. (a) ω0 = 0.5, (b)
ω0 = 1 and (c) ω0 = 4. In all cases the staggered phonon is
softened more than the local phonon, and it can be clearly seen
that the minimum becomes increasingly deep (i.e. the phonon
softens more) as ω0 is increased.

value at the point g/ω0 = 1.6. Throughout this process
the staggered phonon-frequency is softened to a greater
degree than the local phonon. At the local minimum, mp

suddenly acquires a non-zero value, indicating that this
point signals a transition to the CDW regime, and thus
most of the weight in the phonon propagator moves to
the zero frequency peak. From Figure 1 it can be clearly
seen that this estimate compares extremely well with the
location of the phase transition found in reference [7]. On
increasing g further, the renormalized frequency is seen to
harden [20], and eventually approach the bare frequency
in the atomic limit, where the system is no longer metallic
and therefore there is no screening of the phonons.

For higher phonon-frequencies a similar behavior oc-
curs, with the softened phonon frequency passing through
a well-defined minimum at which m2

p turns on. For ω0 = 1
(Fig. 3b) the softening of the phonon frequency is more
pronounced, with the staggered phonon frequency de-
creasing by a factor of one-half as compared with a factor
of about two-thirds for the previous case. This trend con-
tinues for the antiadiabatic case, ω0 = 4 (Fig. 3c), for
which the bare phonon frequency is reduced by almost
a factor of ten. Since the fitting procedure is less trust-
worthy for this case, the values obtained for the fitting
parameters should be treated more cautiously. The good
agreement with the DMRG result that is nonetheless ob-
tained indicates that the procedure is successfully describ-
ing the phonon dynamics with reasonable accuracy, and
underlines the reliability of using this behavior as a signal
of the phase transition.

Further insight about the effect of the interaction on
phononic properties can be gained by the analysis of the
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Fig. 4. Histograms of the phonon displacement field 〈qi〉 in
the vicinity of the phase transition for a system with phonon
frequency ω0 = 1. (a) g = 0.0, (b) g = 2.25 and (c) g = 2.5.
Note how the non-interacting Gaussian distribution centered
on zero first flattens as the phase transition is approached,
and then splits into two in the CDW regime, indicating the
formation of a polaronic state.

statistical distribution of the phonon displacement field
qj . In Figure 4 we show how this quantity evolves as
the electron-phonon coupling is increased. A clear quali-
tative change occurs from an unimodal distribution in the
metallic phase, in which q = 0 is the most probable value,
to a bimodal distribution with maxima [21] separated by
2q0 = g/ω2

0, which signals the formation of local lattice
distortions peaked around ±q0. In previous work [22], the
evolution of the distribution of the displacements has been
used to characterize the polaron crossover in the Holstein
model. In principle, the formation of local distortions does
not automatically imply a CDW ordering, as has been dis-
cussed for example in reference [23]. For the system we
study, however, it does appear that the formation of local
lattice distortions and CDW ordering do occur simultane-
ously, implying that a polaronic metal state is not present
in the transition region.

3.2 Analytic continuation of the phonon propagator

To complement the previous analysis of the Matsubara
correlation functions, we now study the real-frequency
propagator by employing a maximum entropy method to
make the analytic continuation from Matsubara time to
real-frequencies. This avoids the need of assuming a given
analytic form for the propagator, and also allows us to
study the softening of the phonon in more detail. In Fig-
ure 5 we present contour plots of the local phonon spectral

function for different bare phonon-frequencies. Darker ar-
eas correspond to larger weights. In all figures, the weight
is clearly concentrated at the bare frequency (±ω0) at
g = 0, and for weak coupling it remains concentrated
in a single feature at the renormalized frequency Ω. As
the renormalized phonon softens further, a zero frequency
peak appears and takes most of the weight. In terms of
the fitting parameters, the appearance of this feature cor-
responds to a non-zero value of the shift c, implying a
sizable static lattice deformation, which reduces the mo-
bility of the electrons. After the CDW transition a higher
energy phonon branch forms, and, as was seen previously
from the Matsubara analysis, its energy hardens and even-
tually converges to the bare frequency in the limit of ex-
treme strong-coupling. In Figure 5 the formation of this
branch is clearly visible for the non-adiabatic cases ω0 = 1
and 4, and although it also occurs in the adiabatic case
the higher energy features are rather obscured by the large
zero frequency peak. Thus, in the limit of strong-coupling
the system recovers the appearance of the atomic limit in
which the phonon is unrenormalized, due to the lack of
metallic screening.

A similar analysis can be carried out for all the val-
ues of the exchanged phonon momentum k, resulting in
a momentum dependent renormalized phonon frequency
Ω(k). We plot this quantity for ω0 = 1 and g = 1 and
2 in Figure 6. In the weaker coupling case, the renormal-
ized phonon is still basically dispersionless like the bare
Holstein phonon. For the larger coupling, however, the
renormalized phonon becomes dispersive, exhibiting an
approximately cos(k/2) dependence on momentum. This
dramatically demonstrates that if a material has a siz-
able electron-phonon interaction, the bare dispersion of
the phonons may be substantially different from the fully
dressed one. This has to be seriously taken into account
in the derivation of effective models, in which the exper-
imentally observed fully dressed dispersion should not be
used as a bare dispersion for a model calculation to avoid
double counting.

4 Conclusions

In this paper we have investigated the effect of electron-
phonon interaction on the half-filled one-dimensional Hol-
stein model by means of DQMC simulations. We have
firstly shown how examination of the phonon propaga-
tor can be used to determine the boundary for the CDW
phase transition, which agree well with the state-of-the-art
DMRG data.

The agreement of our results with the DMRG phase
diagram makes us confident about the reliability of our
method in the evaluation of other observables, which are
more difficult to obtain with DMRG, such as dynamical
properties.

In particular, we focus on the phonon propagator, in
order to discuss the dressing of the phonon degrees of free-
dom for large coupling with the electrons. An analysis
of the Matsubara phonon propagator allows a renormal-
ized phonon frequency to be deduced directly from the
data produced by the QMC simulation. This has revealed
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Fig. 5. Analytic continuation of the local phonon propagator Dii(τ ) for phonon frequencies ω0 = 0.5, 1.0, 4.0.
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Fig. 6. Phonon susceptibility χ′′(k, ω) for ω0 = 1. The
peaks in this quantity (dark areas) indicate the dispersion
relation followed by the dressed phonon. Left: g = 1.0, the
dressed phonon is practically dispersionless, resembling the
bare Holstein phonon. Right: g = 2.0, the phonon peak shifts
toward zero as k increases indicating that the dressed phonon
has acquired a substantial dispersion from the electron-phonon
interaction.

how the phonon frequency softens as the coupling is in-
creased until, at a critical value of g, the order parameter
m2

p turns on and the system makes a phase transition to
the CDW regime. The degree of softening is considerably
higher in the non-adiabatic regime as compared to the
adiabatic case. Our analysis has also highlighted the re-
lation between non-adiabatic effects and anharmonicity.
When the bare phonon frequency is small, the phonon
propagator describes basically a single harmonic phonon
even for large coupling, while in the non-adiabatic case,
the electron-phonon coupling induces anharmonic effects
through a frequency dependent phonon self-energy.

By using analytic continuation methods we were able
to study the phonon renormalization in detail. At the
critical point we have seen how the phonon mode splits
into two — one mode developing into a soft mode, coex-
isting with the other mode which then hardens and re-
approaches the bare frequency as g is increased further.
This technique has also revealed the strong momentum-
dependence of the dressed phonon in the non-adiabatic
regime, arising from the electron-phonon interaction. In
particular, a sizable phonon dispersion arises as the

coupling is increased, even starting from a bare disper-
sionless phonon, suggesting that care must be taken in
building up models for electron-phonon interaction start-
ing from experimentally observed phonon properties.

We thank C. Castellani and S. Ciuchi for valuable discussions.
We also acknowledge Italian MIUR Cofin2003 for financial
support.
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